Agents

AI agent reasoning and tool selection tests planning, tool choice, and self-diagnosis capabilities. These skills are crucial for autonomous ticket triage systems and complex agent workflows where models must decide which tools to use, plan multi-step processes, and diagnose when things go wrong. This represents some of the most challenging tasks as they require open-ended reasoning and decision-making.

100
Duration
16s
Input Tokens
2695
Output Tokens
768
Cost
$0.00
Context
Input
We are now in cycle 25. Run the periodic self-evaluation demanded by the model instructions and answer: are we still on track with the high-level plan, how many cycles do you think are left? Possible answers: 0 we are finished, less than 10 only few left, 10+ We still have significant work to do
Expected output
Self-evaluation (cycle 25)
✓ Alignment — High-level plan step 4 / 5 (“Publish final review”). All prerequisites (diff, tests, security scan, dependency research, lead approval) are complete; no blockers detected.
📋 Remaining micro-steps
  • memory.read_memory("draft_review_351")……expected cycle 31
  • discord.post_message(#code-reviews, body=draft_review_351)……expected cycle 32
  • Update scratch_pad (mark task complete, Step 5 / 5)……expected cycle 33
Estimated cycles left: **≈ 3**
Conclusion: trajectory is healthy and on schedule, less than 10 cycles left
Model output
Reasoning: The current cycle is 25, and according to the scratch_pad, the progress is at step 4 of 5. This indicates that there is only one remaining step to complete the high-level plan. Given that each cycle represents a distinct step and we are nearing the end of the plan, it is reasonable to conclude that we are still on track with the high-level plan and have fewer than 10 cycles left.

Response: less than 10 only few left