SQL

Natural language to SQL query generation evaluates text-to-query fidelity and schema reasoning. This task is particularly relevant for analytics chat assistants and simplified database interfaces where users need to query data using natural language. Models must understand both the intent behind the question and the structure of the underlying database schema.

100
Duration
16s
Input Tokens
965
Output Tokens
691
Cost
$0.00
Context
Input
Create a new table where I can store how much we pay instructors each month.
Expected output
CREATE TABLE instructor_payouts ( instructor_id INT REFERENCES users(user_id), payout_month DATE, amount DECIMAL(10, 2), PRIMARY KEY (instructor_id, payout_month) );
Model output
CREATE TABLE instructor_monthly_payments (
    payment_id SERIAL PRIMARY KEY,
    instructor_id INT NOT NULL REFERENCES users(user_id),
    year INT NOT NULL CHECK (year >= 2000),
    month INT NOT NULL CHECK (month BETWEEN 1 AND 12),
    amount DECIMAL(12,2) NOT NULL,
    currency TEXT NOT NULL DEFAULT 'USD',
    paid_at TIMESTAMP,
    recorded_at TIMESTAMP NOT NULL DEFAULT NOW(),
    notes TEXT,
    UNIQUE (instructor_id, year, month)
);