SQL

Natural language to SQL query generation evaluates text-to-query fidelity and schema reasoning. This task is particularly relevant for analytics chat assistants and simplified database interfaces where users need to query data using natural language. Models must understand both the intent behind the question and the structure of the underlying database schema.

100
Duration
8s
Input Tokens
948
Output Tokens
873
Cost
$0.00
Context
Input
Create a new table where I can store how much we pay instructors each month.
Expected output
CREATE TABLE instructor_payouts ( instructor_id INT REFERENCES users(user_id), payout_month DATE, amount DECIMAL(10, 2), PRIMARY KEY (instructor_id, payout_month) );
Model output
CREATE TABLE instructor_monthly_payments (
    payment_id SERIAL PRIMARY KEY,
    instructor_id INT REFERENCES users(user_id),
    amount DECIMAL(10, 2),
    payment_year INT,
    payment_month INT,
    payment_date TIMESTAMP,
    created_at TIMESTAMP DEFAULT NOW(),
    UNIQUE (instructor_id, payment_year, payment_month)
);