SQL

Natural language to SQL query generation evaluates text-to-query fidelity and schema reasoning. This task is particularly relevant for analytics chat assistants and simplified database interfaces where users need to query data using natural language. Models must understand both the intent behind the question and the structure of the underlying database schema.

100
Duration
3s
Input Tokens
943
Output Tokens
157
Cost
$0.00
Context
Input
Create a new table where I can store how much we pay instructors each month.
Expected output
CREATE TABLE instructor_payouts ( instructor_id INT REFERENCES users(user_id), payout_month DATE, amount DECIMAL(10, 2), PRIMARY KEY (instructor_id, payout_month) );
Model output
CREATE TABLE instructor_payments (
    payment_id SERIAL PRIMARY KEY,
    instructor_id INT REFERENCES users(user_id) ON DELETE CASCADE,
    pay_year INT NOT NULL,
    pay_month INT NOT NULL CHECK (pay_month BETWEEN 1 AND 12),
    amount DECIMAL(10,2) NOT NULL,
    paid_at TIMESTAMP DEFAULT NOW(),
    UNIQUE (instructor_id, pay_year, pay_month)
);