SQL

Natural language to SQL query generation evaluates text-to-query fidelity and schema reasoning. This task is particularly relevant for analytics chat assistants and simplified database interfaces where users need to query data using natural language. Models must understand both the intent behind the question and the structure of the underlying database schema.

100
Duration
18s
Input Tokens
966
Output Tokens
137
Cost
$0.00
Context
Input
Create a new table where I can store how much we pay instructors each month.
Expected output
CREATE TABLE instructor_payouts ( instructor_id INT REFERENCES users(user_id), payout_month DATE, amount DECIMAL(10, 2), PRIMARY KEY (instructor_id, payout_month) );
Model output
CREATE TABLE instructor_payments (
    payment_id SERIAL PRIMARY KEY,
    instructor_id INT REFERENCES users(user_id),
    payment_month DATE NOT NULL,
    amount_paid DECIMAL(10, 2) NOT NULL,
    created_at TIMESTAMP DEFAULT NOW()
);