Agents

AI agent reasoning and tool selection tests planning, tool choice, and self-diagnosis capabilities. These skills are crucial for autonomous ticket triage systems and complex agent workflows where models must decide which tools to use, plan multi-step processes, and diagnose when things go wrong. This represents some of the most challenging tasks as they require open-ended reasoning and decision-making.

100
Duration
23s
Input Tokens
1243
Output Tokens
1730
Cost
$0.00
Context
Input
What is the complexity of this task?

Task complexity refers to how challenging a task is for the agent to complete, based on the number of steps required, the need for reasoning or coordination, and the availability of tools.

Examples:
- Easy: A small number of clear steps; dedicated tools exist; minimal reasoning needed (e.g., find tomorrow's date and query flights).
- Medium: Several steps; requires combining many outputs from multiple tools (more than 4); moderate reasoning (e.g., summarize document changes across multiple files and generate a review).
- Complex: Many steps; adaptive planning; potential missing data or tool failures; fallback strategies required (e.g., plan a multi-leg trip with hotel, flight, visa checks, and dynamic adjustments).

Please select the appropriate complexity level for this task and explain why.
Expected output
This task is **easy**. It only requires determining tomorrow’s date and querying available flights — both of which have dedicated, reliable tools. There’s minimal reasoning
Model output
Reasoning: To handle this task, the agent needs to confirm the date using the calendar tool, then query the flights tool to find available flights. The steps are minimal, the tools are directly available, and the reasoning required is straightforward. Therefore, the task is relatively simple and does not require extensive planning or fallback strategies.

Response: The complexity of this task is Easy. There is a clear, short series of steps and dedicated tools (calendar, flights) that can handle the queries with minimal reasoning.