Agents

AI agent reasoning and tool selection tests planning, tool choice, and self-diagnosis capabilities. These skills are crucial for autonomous ticket triage systems and complex agent workflows where models must decide which tools to use, plan multi-step processes, and diagnose when things go wrong. This represents some of the most challenging tasks as they require open-ended reasoning and decision-making.

50
Duration
13s
Input Tokens
1275
Output Tokens
773
Cost
$0.00
Context
Input
As the first step you are reflecting and deciding on the plan to follow to complete the task. You have three candidate plans:

A) Plan A:
- Step 1 → Call calendar to get tomorrow’s date.
- Step 2 → Call flights (London ➜ Paris, date).
- Step 3 → Call web_search with query "London to Paris flights on [date]" to cross-check available flights found in the previous step.
- Step 4 → If there are discrepancies between flights tool and web search, re-query flights tool for confirmation.
- Step 5 → Summarize all gathered flight options and send results to the user.

B) Plan B:
- Step 1 → Call calendar to get tomorrow’s date.
- Step 2 → Call flights (London ➜ Paris, date).
- Step 3 → Summarize flights tool results and send to the user.

C) Plan C:
- Step 1 → Call calendar to get tomorrow’s date.
- Step 2 → Call flights (London ➜ Paris, date).
- Step 3 → If the flights tool returns fewer than 3 options, call web_search with query "London to Paris flights on [date]" to supplement results.
- Step 4 → Merge both sets of results and send the combined summary to the user.

Pick **one** plan you will execute.
Expected output
Plan B, is the preferred one as its the most efficient, and that is instructed
Model output
Reasoning: To determine the best plan for finding flights from London to Paris for tomorrow, I need to evaluate each option based on efficiency, thoroughness, and alignment with the goal. Plan A is thorough but excessive with its cross-checking and potential for unnecessary loops. Plan B is the most direct but might not provide comprehensive results if the flights tool has limited data. Plan C strikes the right balance by first using the specialized flights tool (most efficient approach) and only supplementing with web search if fewer than 3 options are returned. This plan follows the instruction to aim for the 'most direct and effective path' while providing a reasonable fallback to ensure comprehensive results when needed. It avoids unnecessary complexity while ensuring the user gets adequate flight options.

Response: I will execute Plan C:
- Step 1 → Call calendar to get tomorrow's date.
- Step 2 → Call flights (London → Paris, date).
- Step 3 → If the flights tool returns fewer than 3 options, call web_search with query "London to Paris flights on [date]" to supplement results.
- Step 4 → Merge both sets of results and send the combined summary to the user.