SQL

Natural language to SQL query generation evaluates text-to-query fidelity and schema reasoning. This task is particularly relevant for analytics chat assistants and simplified database interfaces where users need to query data using natural language. Models must understand both the intent behind the question and the structure of the underlying database schema.

77
mistral/mistral-small-eu
Average duration
0
Average tokens
0
Average cost
$0
100
null
0
opper_sql_sample_01
100
null
0
opper_sql_sample_02
100
null
0
opper_sql_sample_03
100
null
0
opper_sql_sample_04
100
null
0
opper_sql_sample_05
100
null
0
opper_sql_sample_06
100
null
0
opper_sql_sample_07
100
null
0
opper_sql_sample_08
100
null
0
opper_sql_sample_09
100
null
0
opper_sql_sample_10
100
null
0
opper_sql_sample_11
75
null
0
opper_sql_sample_12
25
null
0
opper_sql_sample_13
50
null
0
opper_sql_sample_14
75
null
0
opper_sql_sample_15
0
null
0
opper_sql_sample_16
50
null
0
opper_sql_sample_17
50
null
0
opper_sql_sample_18
50
null
0
opper_sql_sample_19
75
null
0
opper_sql_sample_20
100
null
0
opper_sql_sample_21
75
null
0
opper_sql_sample_22
50
null
0
opper_sql_sample_23
50
null
0
opper_sql_sample_24
50
null
0
opper_sql_sample_25
100
null
0
opper_sql_sample_26
50
null
0
opper_sql_sample_27
75
null
0
opper_sql_sample_28
100
null
0
opper_sql_sample_29
100
null
0
opper_sql_sample_30